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The tiger-fly Coenosia attenuata is a globally widespread predatory fly which is not only associated with greenhouse
crops, but also occurs in open fields. It is a potential control agent against some of the more common pests in these
crops. Assessing the genetic structure and gene flow patterns may be important for planning crop protection
strategies and for understanding the historical processes that led to the present distribution of genetic lineages
within this species. In the present study, the phylogeographical patterns of this species, based on mitochondrial
cytochrome oxidase I and nuclear white and elongation factor-1α genes, are described, revealing relatively low
genetic diversity and weak genetic structure associated with a recent and sudden population expansion of the
species. The geographical distribution of mitochondrial haplotypes indicates the Mediterranean as the most likely
region of origin of the species. Some dispersal patterns of the species are also revaled, including at least three
independent colonizations of North and South America: one from Middle East to North America with a strong
bottleneck event, another from Europe to South America (Chile), with both likely to be a result of unintentional
introduction, and a third one of still undetermined origin to South America (Ecuador). © 2014 The Linnean
Society of London, Biological Journal of the Linnean Society, 2015, 114, 308–326.
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INTRODUCTION

Studies of the genetic structure and dispersal pat-
terns of species with wide distributions, whose
dispersal may have been facilitated by humans,
has proved crucial for understanding the causes
of spread for many crop pests and diseases
(Magiorkinis et al., 2009; Faria et al., 2012; Karsten
et al., 2013), as well as new adaptations, such as
resistance to pesticides (Alvarez et al., 2007). These
types of studies are more scarce for natural enemies
of pest species (but see Gebiola et al., 2014),
although they may be important when planning
crop protection strategies that involve inoculative,
and especially inundative (Eilenberg, Hajek &
Lomer, 2001), release of commercially produced bio-
control agents of unknown origin because non-native
genotypes can be less adapted to the environment
where they are going to be released and they can
also originate the loss of genetic variation (Laikre
et al., 2010). High dispersal does not always imply
low genetic structure, as seen, for example, in the
migratory locust, Locusta migratoria (L.), which,
despite its high migratory abilities, shows high
genetic differentiation between different geographi-
cal regions (Ma et al., 2012). On the other hand,
even in cases where dispersal events are rare, they
may be sufficiently frequent to homogenize the
genetic composition of populations. Besides disper-
sal, other factors may shape the distribution of
genetic variation across populations, namely geo-
graphical isolation, genetic drift and founder effects,
selection, and range expansions and contractions
(Avise, 2000; Wilson et al., 2009). By describing the
population structure and patterns of gene flow,
phylogeographical studies are important for under-
standing the historical processes that have led to
the present distribution of genetic lineages within
species (Avise, 2000).

The tiger-fly Coenosia attenuata Stein is a
polyphagous predator (Kühne, 2000; Prieto,
Figueiredo & Mexia, 2005) that has been recognized
as an effective biological control agent, especially for
insect pests of protected crops (Kühne, 2000; Prieto
et al., 2005; Martins et al., 2012; Mateus, 2012;
Pohl et al., 2012). The adults of C. attenuata are the
only known predators of the adult stage of several
insect pests of those crops, such as whiteflies and
leafminers (Prieto et al., 2005; Mateus, 2012). They
may attack and kill their prey without feeding
(Martinez & Cocquempot, 2000). In the first half
of the 20th Century, C. attenuata was reported as
being present in the Palaearctic, Afrotropical, Ori-
ental, and Australian regions (Hennig, 1964). Sub-
sequently, C. attenuata has been expanding its
distribution range and was detected in the Nearctics

and Neotropics (Table 1). Coenosia attenuata is con-
sidered to be native to the Paleotropical region (Pohl
et al., 2012) where Hennig (1964) reported a wide-
spread distribution. However, other studies noted
a Palearctic or Mediterranean origin (Martinez &
Cocquempot, 2000; Téllez & Tapia, 2006; Ugine
et al., 2010), probably misunderstanding Hennig
(1964), who only reported its occurrence in the
Palearctic (Table 1) but did not mention this region
as the place of origin of the species. Its polyphagy,
as well as the high diversity of host plants, the
increasing trade of vegetable and ornamental plants
(Kühne, Schiller & Dahl, 1997; Kühne, 2000; Salas
& Larraín, 2011; Martins et al., 2012; Mateus,
2012; Pohl et al., 2012), and its tolerance to high
temperatures, such as those recorded inside green-
houses during the Mediterranean summer (Gilioli,
Baumgärtner & Vacante, 2005), are included
among the factors that may be responsible for the
successful worldwide dispersal of this predatory
species. The patterns of genetic diversity of
C. attenuata across its distribution range may give
indication about the origin and range dynamics of
the species.

Mitochondrial (mt)DNA is the most used genetic
marker in phylogeographical studies because of its
rapid mutation rate, its short coalescent time as a
result of haploidy and maternal inheritance of this
genome, and its lack of recombination (Avise, 2000;
Ballard & Whitlock, 2004). However, the mtDNA
history may not always reflect the history of the
species because the analysis of a single molecule
may be affected by random sampling of coalescent
processes, selective sweeps or introgression (Ballard
& Whitlock, 2004). Independent data from nuclear
DNA is thus valuable to allow a more complete
interpretation of phylogeographical patterns.

Assessing the levels of divergence between closely-
related species is essential for understanding the
patterns of genetic variation within a species
(Koutroumpa et al., 2013; Pfeiler et al., 2013). Because
no phylogenetic study to date has included the
species C. attenuata, we evaluated the position of the
haplotypes found in relation to haplotypes from other
Coenosia species: Coenosia humilis Meigen, Coenosia
tigrina (Fab.), and Coenosia testacea (Robineau-
Desvoidy), and from two other calyptrate genera, Delia
and Anthomyia (family Anthomyiidae).

In the present study, we analyze the phylogeo-
graphy of C. attenuata at a global scale, based on one
mitochondrial gene and two nuclear genes, aiming
to test hypothesis about the origin of the species
(Palaearctic, and eventually Mediterranean), coloni-
zation patterns (either natural or human-mediated),
and demographic events (expansions and inferred
times).
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MATERIAL AND METHODS
SAMPLING

A total of 150 specimens of C. attenuata from 52
localities of 17 countries were analyzed (Fig. 1,

Table 2), covering a large area of the worldwide
distribution range of this species (Asia, Australia,
Europe, Macaronesian islands, North Africa, and
North and South America). Most specimens were cap-
tured in greenhouses directly into boxes and plastic

Table 1. Geographical distribution of Coenosia attenuata

Zoogeographical
region Country/region References

Palearctic
Mediterranean

basin
Algeria Hennig (1964)
Cyprus Pont (1986)
Egypt Hennig (1964)
France Martinez & Cocquempot (2000)
Greece Pont, 2004
Israel Kugler (1969), Pont (1986)
Italy Colombo & Eördegh (1990)
Sicily Present study*
Libya – Cyrenaica Hennig (1964)
Malta Ebejer & Gatt (1999)
Morocco Pont (1986)
Portugal Prieto (2002); Prieto et al. (2005)
Spain Hennig (1964), Rodríguez-Rodríguez & Aguilera

(2002), Téllez & Tapia (2006)
Syria Hennig (1964)
Turkey Pohl, Uygur & Sauerborn (2003), Pohl et al. (2012)

Europe (excluding
Mediterranean
countries)

Germany Schrameyer (1991), Kühne (2000)
The Netherlands Blind (1999)
Slovakia Suvák (2008)

Asia Afghanistan Hennig (1964)
China – Xinjiang region Xue & Tong (2003)
Iran Shirazi, Kaviani & Parchami-Araghi (2010)
Iraq Pont (1986)
Tajikistan Hennig (1964)

Macaronesia Azores Islands – Terceira Prieto et al. (2005)
– San Miguel Borges (2008)

Canary Islands Hennig (1964)
Cape Verde Islands Hennig (1964)
Madeira Islands Pont (1986), Prieto et al. (2005)

Ethiopian South Africa Hennig (1964)
Yemen – Sokotra Island Hennig (1964)

Oriental China: Xishuangbanna (Yunnan Province) Xue & Tong (2003) (C. attenuata ssp. brunea)
Indonesia: Lombok and Flores Isl. Hennig (1964)
Taiwan Hennig (1964)

Australian Australia – Sydney Hennig (1964)
Neartic USA: New York, Maine, Illinois,

Connecticut, California
Hoebeke et al. (2003), Sensenbach (2004)

Canada: Québec, Ontario Roy & Fréchette (2006)
Neotropical Chile Couri & Salas (2010)

Colombia Pérez (2006)
Costa Rica Hernández (2008)
Ecuador Martinez-Sánchez, Marcos-Garcia & Pont (2002)
Peru Martinez-Sánchez et al. (2002)

*As far as we are aware, this is the first reference of Coenosia attenuata in Sicily.
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bags or by using sticky traps, and then preserved in
absolute ethanol. Seventeen specimens came from the
Natural History Museum in London (NHM) collec-
tion. They had been collected between 1935 and 2002
in Cape Verde islands, Ecuador, Egypt, India, Oman,
and USA, and have been preserved dried. Eight speci-
mens from NHM, collected in Australia and identified
as Coenosia subvittata (Malloch) (four male speci-

mens) and Coenosia imitatrix (Malloch) (four female
specimens), were also used. Five specimens of other
species were also included to be used as outgroups:
three belonging to two other species of the same
genus (one specimen of C. humilis, and two specimens
of C. tigrina), and the others belonging to two differ-
ent genera (one Anthomyia sp. and one Delia sp.)
from another dipteran family, Anthomyiidae.

Figure 1. A, sampling locations of Coenosia attenuata. Circles with black margins and the the letter M represent the
museum sample locations. B, C, D, E, haplotype networks for Coenosia attenuata for cytochrome oxidase I (COI)
(647 bp) (B), COI-1 + COI-2 (270 pb) (C), white (D) and EF-1α (E). The size of the circular nodes (haplotypes) is
proportional to the number of individuals (or haplotypes, in nuclear genes). Tick marks on branches indicate the
number of mutational steps between nodes, except in H20, separated by seven mutational steps in (B) and by three
mutational steps in (C).
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DNA EXTRACTION, AMPLIFICATION, AND SEQUENCING

The head and thorax of the recently collected speci-
mens were used for DNA extraction with EZNA®
Tissue DNA Isolation kit (Omega Bio-Tek) in accord-
ance with the manufacturer’s instructions. Initially,
the tissues were macerated inside each tube with the
tip of a pipette, and then left digesting overnight. For
the dried museum samples, single middle or front
legs were used for DNA extraction with DNeasy Blood
& Tissue Kit (Qiagen), and the elution was carried
out in a reduced volume of 50 μL of buffer AE that
was reloaded in the spin-column once for higher
recovery of DNA.

A fragment of approximately 800 bp of cytochrome
oxidase I (COI) mitochondrial gene was amplified
by the polymease chain reaction (PCR) and for
all the non-museum specimens (125 C. attenuata
and five specimens from four outgroups species)
(Table 2) using primers C1-J-2195 (5′-TTGATTTTTT
GGTCATCCAGAAGT-3′) and TL2-N-3014 (5′-TCCAA
TGCACTAATCTGCCATATTA-3′) (Simon et al., 1994).
DNA of the 25 dried museum samples was degraded
and new primers were designed for amplification
of two smaller fragments of COI (COI-1 and COI-2),
one with 180 bp, using primers C1-J-2195 and
OXIcat183R (5′-CCTACAGTAAATATATGATGAG-3′),
and the other with 200 bp, using primers OXIcat583F
(5′-CTTTTTAGGATTAGCAGGAATACC-3′) and TL2-
N-3014. These were designed based on the COI
sequences obtained for the field collected samples
and included most of the variable positions, mostly
located near the 5′ end and the 3′ end of the COI
fragment.

A fragment of exon 3 of the white nuclear gene
(approximately 600 bp) was sequenced for 19 indi-
viduals (Table 2) using primers WEC-F21 (5′-
GTTTGTGGCGTAGCCTATCC-3′) and WEC-R12
(5′-AATGTCACTCTACCYTCGGC-3′) (Ready et al.,
2009) and a fragment of the elongation factor-1α
(EF-1α) nuclear gene (approximately 700 bp) was
amplified for 12 individuals using primers EF0 (5′-
TCCGGATGGCAYGGCGAGAAYATG-3′) and EF2 (5′-
ATGTGAGCAGTGTGGCAATCCAA-3′) (Villablanca,
Roderick & Palumbi, 1998).

PCR conditions for COI comprised a 12.5-μL reac-
tion containing 1 × Colorless GoTaq® Flexi Buffer,
0.1 mM dNTPs, 2 mM MgCl2, 1 μM of each primer,
0.02 U GoTaq® DNA Polimerase (Promega), and
approximately 30 ng of DNA, amplified by an initial
denaturation step at 94 °C for 3 min, followed by 35
cycles of denaturation at 94 °C for 30 s, annealing at
50 °C for 45 s and extension at 72 °C for 1 min, with
a final extension period at 72 °C for 7 min. For the
two smaller fragments, COI-1 and COI-2, PCR con-
ditions comprised a 12.5-μL reaction containing

1 × Colorless GoTaq® Flexi Buffer, 0.1 mM dNTPs,
1.8 mM MgCl2, 0.6 μM of each primer, 0.04 U GoTaq®
DNA Polimerase (Promega), and approximately 30 ng
of DNA, amplified by an initial denaturation step at
94 °C for 1 min, followed by 45 cycles of denaturation
at 94 °C for 30 s, annealing at 57 °C for 1 min and
extension at 72 °C for 45 s, with a final extension
period at 72 °C for 7 min. For the White gene and
EF-1α nuclear genes, PCR conditions comprised a
10-μL reaction containing 1 × Colorless GoTaq® Flexi
Buffer, 0.25 mM dNTPs, 2 mM MgCl2, 0.5 μM of each
primer, 0.05 U GoTaq® DNA Polimerase (Promega),
and approximately 30 ng of DNA, amplified by an
initial denaturation step at 94 °C for 1 min, followed
by 30 cycles of denaturation at 94 °C for 30 s, anneal-
ing at 50 °C for 45 s and extension at 72 °C for 45 s,
with a final extension period at 72 °C for 5 min. For
the nuclear genes, several nonspecific fragments were
amplified in the PCR; thus, the desired fragment of
the expected size was isolated from the agarose gel for
each individual and then reused as template in a new
PCR reaction with the same conditions as described
above.

As a result of the risk of contamination between
samples when using museum material, precautions
were taken to avoid contamination in every step of
the protocol, namely different PCR reagent stocks and
replicated PCR reactions.

PCR products were purified with Sureclean (Bioline)
in accordance with the manufacturer’s instructions.
Forward and reverse sequences were sequenced by
external companies, either Stabvida (http://www
.stabvida.com), Macrogen (http://dna.macrogen.com)
or Beckman Coulter (https://www.beckmancoulter
.com).

SEQUENCE EDITING AND PHYLOGENETIC ANALYSIS

Forward and reverse sequences were aligned and
edited in SEQUENCHER, version 4.0.5 (Gene Codes
Corporation) and the consensus sequences were
aligned in the sequence alignment editor BIOEDIT,
version 7.0.9 (Hall, 1999). Two sequences from
another study (Kutty et al., 2008) available from
GenBank were also included in the analysis, identi-
fied as C. tigrina (accession number FJ025606.2) and
C. testacea (accession number FJ025605.1). Input file
conversions were conducted in CONCATENATOR,
version 1.1.0 (Pina-Martins & Paulo, 2008) and
PGDSPIDER, version 2.0.3.0 (Lischer & Excoffier,
2012). MEGA, version 5.2 (Tamura et al., 2011)
was used to obtain the translation to amino acids
using the invertebrate genetic code and to calculate
pairwise uncorrected genetic distances. The
phylogenetic relationships based on mitochondrial
COI and the two nuclear genes were inferred by
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Bayesian inference using MrBayes, version 3.2.2
(Ronquist et al., 2012). The posterior probabilities
of the phylogenetic trees were estimated by a
Metropolis-coupled, Markov chain Monte Carlo sam-
pling algorithm. Stationarity of the likelihood scores
of the trees with the generation time was checked
using TRACER, version 1.5 (Rambaut & Drummond,
2007); a total of 2 × 106 generations were sampled
every 1500 generations with a ‘burn-in’ of 1000.
Maximum likelihood analysis was performed using
PAUP, version 4.0.d99 (Swofford, 2002), with a heu-
ristic search performed using 100 replicates, and
branch support was obtained by performing 1000
replicates of nonparametric bootstrap. For each
dataset, the best fit model of sequence evolution was
estimated under the Akaike information criterion
using JMODELTEST, version 2 (Posada & Crandall,
1998) and MRMODELTEST, version 2 (Nylander,
2004).

GENETIC DIVERSITY AND

POPULATION DIFFERENTIATION

Haplotype and nucleotide diversities were calculated
in DNASP, version 5.10.01 (Librado & Rozas, 2009)
for all genes. Mitochondrial data was used to test
the level of population structure among regions by
performing an analysis of molecular variance with
10 000 permutations in ARLEQUIN, version 3.5
(Excoffier & Lischer, 2010). To test for a correlation
between genetic and geographical distances, a Mantel
test with 10 000 permutations was performed in
ARLEQUIN. Geographical distances were measured
as great circle distances between the geographical
coordinates of the sampling location (or of the cen-
troid, if there were different sampling points) using
GPS VISUALIZER (http://www.gpsvisualizer.com/
calculators). Median-joining haplotype networks for
the mitochondrial and nuclear haplotypes were
obtained using NETWORK, version 4.6.1.0 (http://
www.fluxus-engineering.com; Bandelt, Forster &
Röhl, 1999).

DEMOGRAPHIC ANALYSIS

Neutrality tests of Tajima’s D (Tajima, 1989) and Fu’s
FS statistics (Fu, 1997) were calculated and tested for
deviations from neutrality using 10 000 coalescent
simulations in ARLEQUIN. Mismatch distributions of
pairwise sequence differences were also performed in
ARLEQUIN with 1000 permutation replicates.

Estimated expansion values were obtained using
ARLEQUIN and graphics of frequency distribution
using DNASP, version 5 (Librado & Rozas, 2009). To
test the observed mismatch distribution goodness-of-
fit to the sudden expansion model and to obtain

confidence intervals around the estimated mode of
mismatch distribution, 1000 permutation replicates
were used (Schneider & Excoffier, 1999). Statistically
significant differences between observed and expected
distributions were evaluated with the sum of the
square deviations (SSD) and Harpending’s ragged-
ness index (Harpending, 1994).

RESULTS
GENETIC VARIABILITY AND DIVERSITY

A fragment of 647 bp at the 3′ end of cytochrome
oxidase I (COI) mitochondrial gene was obtained,
after trimming, for 125 C. attenuata specimens (the
museum ones were not included here) and five speci-
mens from other four species. Within C. attenuata, 19
characters were variable of which 14 were parsimony
informative and 20 haplotypes were found (Table 3).
The G + C content was on average 27.6% and differed
with codon position (39.5% in the first position; 38.0%
in the second; and 5.4% in the third). No evidence of
nuclear copies was found because there were no stop
codons within the sequence and the base composition
was similar with no indels among all sequences. A low
number of transversions and of nonsynonymous sub-
stitutions were found (see Supporting information,
Table S1).

The two smaller fragments amplified in the
degraded museum samples, one at the 5′ end and
the other at the 3′ end of the above COI fragment,
were concatenated (COI-1 + COI-2) and sequences of
270 bp were obtained for the 25 museum specimens.
These were aligned with the same fragments of the
remaining samples, resulting in a matrix of 150 indi-
viduals of C. attenuata. The smaller fragment size
resulted in the merging of some haplotypes in the
original COI fragment (Table 4). On the other hand,
the addition of the museum samples to the analysis
revealed four new haplotypes (H21, H22, H23, and
H24). When excluding the third codon positions, only
one variable character remained: one transition in
CHI5 (Chile).

A fragment of 533 bp of the white nuclear gene
was obtained for 17 C. attenuata and one C. humilis.
This aligned with the white gene of Drosophila
melanogaster (FBgn0003996, http://flybase.org/) with
27% average nucleotide divergence (p-distance) from
C. attenuata. Within C. attenuata, three characters
were variable of which one was parsimony informa-
tive, which was also the only nonsynonymous substi-
tution, resulting in an amino acid change from valine
to methionine. Four haplotype types were found
(Table 5). Three individuals were heterozygous in
one nucleotide position (ISR1, Israel; CRE1_2, Crete;
ALG2, Iberian Peninsula).
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A fragment of 300 bp of EF-1α nuclear gene was
obtained, after trimming, for 11 C. attenuata and one
Anthomyia sp. Elongation factor has paralogous
copies in several insect species, including Diptera
(Djernaes & Damgaard, 2006). The fragment consid-
ered here aligned with D. melanogaster elongation
factor 1α48D (FBgn0000556, http://flybase.org/) with
17% average nucleotide divergence (p-distance) from
C. attenuata. Within C. attenuata, six characters
were variable of which one was parsimony informa-
tive. One nonparsimony informative site had a
nonsynonymous substitution, in sample CRE3_5
(Crete), resulting in aminoacid change from arginine
to histidine. Some samples had unreadable sequence
in the start of the sequence and were included as N in
the initial matrix. After trimming, to exclude these N,
only 140 bp remained, which included three variable
sites. Four haplotype types were found (Table 5). Two
individuals were heterozygous in one nucleotide posi-
tion (ISR1, Israel; CAL1, Italy).

GenBank accession numbers for all genes are:
KJ585390 to KJ585414 for COI; KJ652092 to
KJ652113 for White; and KJ652114 to KJ652126 for
EF (Table 2).

PHYLOGENETIC AND POPULATION

STRUCTURE ANALYSIS

Mean uncorrected sequence divergence between the
four Coenosia species considered here ranged from
6.8% (between C. attenuata and C. humilis) to 11.3%
(between C. attenuata and C. tigrina). Between
Coenosia species and the other dipteran species,
divergence was higher than 12% (see Supporting
information, Table S2). Within C. attenuata, the
haplotypes diverged from 0.2% to 0.9%, except
the H20 haplotype that diverged from the others
by 1.2% to 1.7%. These divergences are visible in the
phylogenetic tree (Fig. 2) in which C. attenuata
haplotypes form a well-supported monophyletic group
with low genetic differentiation within it, having only
one more divergent haplotype, found in Crete (H20).
The nuclear genes showed no distinct lineages within
C. attenuata (see Supporting information, Fig. S1).

The haplotype networks for COI, COI-1 + COI-2,
White and EF (Fig. 1) showed low diversity and high
similarity between haplotypes, with the exception of
one mitochondrial haplotype from Crete that was
more divergent (H20), as reported above. However,
the nuclear divergence did not correspond to this
mitochondrial divergence because the individuals
with H20 mitochondrial haplotype had nuclear
sequences identical to the remaining C. attenuata.
The networks also showed the lack of geographical
differentiation. The nuclear genes had a more
common haplotype, present around the world, andT
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Table 5. Number of nuclear haplotypes in each geographical region and each haplotype type in the fragments white and
EF-1α

White Elongation factor

H-W1 H-W2 H-W3 H-W4 Total H-EF1 H-EF2 H-EF3 H-EF4 Total

Iberian Peninsula 3 1 4 2 2
Azores 2 2 2 2
Madeira 2 2 0
Italy 2 2 4 2 2
Germany 2 2 2 2
Slovakia 0 0
Crete 7 1 8 4 2 6
Anatolia 0 0
Israel 3 1 4 1 1 2
Iran 4 4 2 2
California 2 2 2 2
Chile 2 2 2 2
Total 27 1 4 2 34 17 1 2 2 22

The total number of haplotypes per population and haplotype type are also indicated.

Figure 2. Bayesian tree of the haplotypes found in cytochrome oxidase I (COI) (647 bp) in Coenosia attenuata (H1 to H20)
and the other species CHU, Coenosia humilis; CTI, Coenosia tigrina; CTE, Coenosia testacea; ANT, Anthomyia sp.; DEL,
Delia sp.; GB, sequences from GenBank. Values above branches are the maximum likelihood bootstrap values (> 50%) and
values below branches are Bayesian posterior probabilities.
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three other low frequency haplotypes differing in a
single mutation from this one found in scattered
populations. Some patterns are visible in the
mitochondrial COI and COI-1 + COI-2 networks:
Iberian Peninsula, Azores, Madeira, and Anatolia are
represented in diverged haplotypes across the
network; Crete has two highly divergent haplotypes;
Central Europe has only one haplotype, one of the
most abundant ones; Middle East has one more abun-
dant haplotype and several derived and exclusive
ones, in a star pattern characteristic of recent expan-
sion events; South Asia and Australia have one
haplotype (H22) also present in Cape Verde, North
Africa (Egypt), and South America (Ecuador); in
South America, Chile has one of the most abundant
haplotypes present in Europe and some derived and
exclusive ones, and Ecuador has a widespread
haplotype as referred above; North America has only
one haplotype, the most abundant one in the Middle
East. We investigated whether there was any geo-
graphical structure in the distribution of haplotypes
within the Iberian Peninsula, the region with higher
number of samples and populations in the present
study. No pattern was found (see Supporting infor-
mation, Fig. S2).

The haplotypes found in the NHM specimens from
Australia were the same as those found in the other

specimens of C. attenuata, although they had been
identified as either C. subvittata or C. imitatrix.

The haplotype diversity of COI in all C. attenuata
was 0.839 and the nucleotide diversity was 0.00389.
These diversities were also calculated for different
geographical groups (Table 6) and revealed a higher
haplotype and nucleotide diversity in the East
Mediterranean (h = 0.837 and π = 0.0063 for COI;
h = 0.876 and π = 0.0107, for COI-1 + COI-2, which
included the NHM samples from Egypt), partly as a
result of the H20 divergent haplotype. Macaronesia
also showed high haplotype and nucleotide diversities
(h = 0.810 and π = 0.0037, respectively, for COI;
h = 0.857 and π = 0.089, respectively for COI-1 and
COI-2, which included the NHM samples from Cape
Verde). South America, despite the low number of
samples (five from Chile and two from Ecuador),
showed a high haplotype diversity, with four different
haplotypes found in Chile for COI, with few muta-
tional steps between them (h = 0.900, π = 0.0019), and
three haplotypes in Chile and one in Ecuador for
COI-1 + COI-2 (h = 0.810, π = 0.0068). Egypt alone
(six samples) showed relatively high diversity as well
(h = 0.800, π = 0.0055).

Several groupings of populations, chosen based on
the visualization of the COI haplotype network,
were tested by analysis of molecular variance, and the

Table 6. Number of haplotypes (NH), haplotype diversity (h) and nucleotide diversity (π) of COI fragment (647 bp) and
of COI-1 + COI-2 (270 bp) in Coenosia attenuata for each geographical grouping considered

COI (647 bp) COI-1 + COI-2 (270 bp)

N NH h π N NH h π

Europe 51 7 0.690 0.0036 51 5 0.660 0.0085
Mediterranean 68 11 0.793 0.0049 74 11 0.806 0.0099
Mediterranean without H20 63 10 0.763 0.0034 69 10 0.781 0.0083
West Mediterranean 44 7 0.723 0.0037 44 5 0.685 0.0085
Iberian Peninsula 35 6 0.703 0.0033 35 4 0.661 0.0076
East Mediterranean 24 7 0.837 0.0063 30 9 0.876 0.0107
East Mediterranean without H20 19 6 0.795 0.0026 25 8 0.853 0.0071
Macaronesia 18 6 0.810 0.0037 21 8 0.857 0.0089
West Asia 35 12 0.755 0.0021 38 9 0.595 0.0037
South America 5 4 0.900 0.0019 7 4 0.810 0.0068
Australia – – – – 8 2 0.250 0.0009
North America – – – – 7 1 0.000 0.0000
Paleotropical – – – – 5 3 0.700 0.0052
Egypt – – – – 6 4 0.800 0.0055

N, number of individuals. Europe: Iberian Peninsula, Italy, Germany, Slovakia; Mediterranean: Iberian Peninsula, Italy,
Anatolia, Crete, Israel (and Egypt for COI-1 + COI-2); West Med: Iberian Peninsula, Italy; East Med: Anatolia, Crete,
Israel (and Egypt for COI-1 + COI-2); Middle East: Anatolia, Israel, Iran (and Oman for COI-1 + COI-2); Macaronesia:
Azores, Madeira; Palaeotropical: Cape Verde, Oman, India; North America: California (and New York for COI-1 + COI-2);
South America: Chile (and Ecuador for COI-1 + COI-2). Calculations that include Crete were also performed without the
haplotype H20.
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percentage of variation observed among groups was
always lower than that within populations or that
among populations within groups (see Supporting
information, Table S3). The correlation between
pairwise FST and geographical distances was low and
nonsignificant (Mantel test, r = 0.020, P = 0.411 for
COI and r = 0.091, P = 0.143 for COI-1 + COI-2).

DEMOGRAPHIC ANALYSIS

The demographic history of C. attenuata was
analyzed excluding the highly divergent haplotype
H20. The distribution of pairwise nucleotide differ-
ences (mismatch distribution) showed a slightly
bimodal curve (see Supporting information, Fig. S3).
The SSD and raggedness index did not differ signifi-
cantly from the expected under sudden and spatial
population expansion models (Table 7). Significant
negative deviations from neutrality were detected
with Fu’s FS statistic, which corroborate the hypoth-
esis of past population expansion events.

DISCUSSION

The phylogeographical analysis based on mtDNA and
nuclear DNA across the wide distribution range of
C. attenuata revealed relatively low genetic diversity
consistent with a very recent demographic and spatial
expansion. For the 150 specimens analyzed, we only
found 24 COI haplotypes with a few mutational steps
between them. Low mitochondrial diversity may be a
result of natural selection acting on mitochondria
(Ballard & Whitlock, 2004; Bazin, Glémin & Galtier,
2006; Balloux et al., 2009). Maternally-inherited
symbionts, such as Wolbachia, are well-known agents
of selection in mitochondria (Hurst & Jiggins, 2005).
The fact that the number of males in natural popu-
lations of C. attenuata is much lower than the
number of females (male : female ratio of 1 : 4;
Mateus, 2012) supports that possibility, considering
that the observed sex ratio may be an outcome of
male-killing bacteria such as Wolbachia (Weeks,
Reynolds & Hoffmann, 2002; Martin et al., 2012).
This hypothesis deserves to be tested. However, the
nuclear DNA in this species shows also very low
variability, both in white and EF-1α genes. This sug-
gests a recent divergence within C. attenuata. The
demographic analysis supports the hypothesis of a
recent worldwide population expansion. However,
the occurrence of one more divergent mitochondrial
haplotype (H20) may indicate that the species started
diverging earlier, although only a restricted subset
of the gene pool was able to disperse widely. Interme-
diate lineages may have existed and gone extinct
or were not yet sampled. Sorting of mitochondrial
lineages may be faster than assumed by the current
divergence patterns, as shown in the moth Hyles
euphorbiae (L.), in which the study of historic
DNA from museum specimens revealed a recent
demographic change, possibly associated with
anthropogenic habitat loss and fragmentation, as well
as with recent climate warming that favoured the
spreading of one of the potentially better adapted
lineages (Mende & Hundsdoerfer, 2013).

No well-defined patterns of geographical structure
were found, which may be the result of very recent
worldwide colonization or to recurrent high levels
of gene flow, as described for other widespread
species that lack phylogeographical structure
(Vandewoestijne et al., 2004; van Gremberghe et al.,
2011; Karsten et al., 2013). The dispersal ability of
C. attenuata is not known. Because C. attenuata is
usually found associated with protected crops, often
reaching high numbers within greenhouses, it is very
likely that dispersal mediated by humans through
international trade has facilitated the expansion of its
distribution range. The larvae of C. attenuata develop
in the soil, preying on the larvae of fungus gnats

Table 7. Parameters from the mismatch distribution for
COI (647 bp) in Coenosia attenuata, excluding haplotype
H20

Demographic expansion
τ 3.414 (0.713–5.897)
θ0 0.000 (0.000–0.779)
θ1 5.005 (3.243–99 999)
SSD 0.012
PSSD 0.390
Raggedness 0.033
Prag 0.675

Spatial expansion
τ 1.876 (0.680–4.542)
θ 1.034 (0.0007–2.813)
M 6.441 (1.925–99 999)
SSD 0.015
PSSD 0.302
Raggedness 0.034
Prag 0.754

Neutrality tests
Tajima’s D test −0.397
P (sim_D < obsD) 0.394
Fu’s FS test −27.125
P (sim_FS ≤ obs_FS) 0.000

Numbers in parentheses are the upper and lower bound of
the 95% confidence interval (1000 bootstrap replicates). θ0

and θ1, pre-expansion and post-expansion populations size;
τ, time in number of generations elapsed since the sudden/
demographic expansion and spatial expansion episodes;
SSD, sum of squared deviations; Raggedness, raggedness
index.
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(Diptera: Sciaridae) or on other soil organisms and
are able to survive for long periods (up to 34 days)
with low numbers of prey before dying of starvation
(Ugine et al., 2010). Thus, human-mediated move-
ment of potted plants from one place to another may
easily transport its immature stages. The accidental
introduction of C. attenuata through commercial
transport of plant material in potting media was
suggested by Kühne et al. (1997) and Hoebeke et al.
(2003). Indeed, the degree of international trade has
been shown to be the best predictor of the number of
invasive alien species in a country (Westphal et al.,
2008). Adults of C. attenuata may also be carried with
plants or plant parts. The hypothesis of long-range
dispersal, either by active flight or passive transpor-
tation by wind, cannot be ruled out. For example,
Diptera have been reported as being generally the
second most abundant order of insects in aerial
netting studies carried out in the UK (Chapman
et al., 2004). There was no pattern of isolation-by-
distance, at least in the long range, and the analysis
of molecular variance showed a lack of genetic struc-
ture among geographical regions, which suggests
ongoing global gene flow. In the present study, a
few samples were collected in wild areas and in
nonprotected crops, far away from greenhouses (at
least, all sampled populations from Israel, Oman, and
Cape Verde, one population from Iran, and a few from
Portugal) (Table 2). Despite that, these samples pre-
sented the same haplotypes as those found in the
respective regions. This does not give us an indication
about the type of dispersal (either natural or human-
mediated) but does indicate that the gene pool is
essentially the same, with no restriction of dispersal
both from and to the greenhouses. The colonization of
greenhouses by individuals of C. attenuata coming
from the surrounding environment and their ability
to establish there by reproducing and completing
development within greenhouses’ soil have been docu-
mented (Kühne et al., 1997).

Our data support the hypothesis that the most
likely origin of C. attenuata is the Mediterranean
Basin, where most of the major haplotypes were
found, and haplotype diversity and nucleotide were
higher. The Mediterranean region has previously
been suggested as the possible origin for this species
(Martinez & Cocquempot, 2000). However, the contri-
bution of the Macaronesian islands to the diversifica-
tion of the species deserves further study. The fact
that we have found a haplotype most divergent from
all other (H20) only in the eastern Mediterranean
(Crete) may indicate that the source has been in this
area, where several haplotype groups may have
existed, although only one of them has expanded to
other regions, as seen before. Given our unsuccessful
attempts to obtain samples from East Asia or the

African continent (except from Egypt), it is likely that
other haplotypes will be found in C. attenuata popu-
lations from these areas and thus we cannot exclude
completely a Paleotropical origin, as suggested by
Hennig (1964). The Middle East is an area of very
recent diversification, as seen from the star-like
pattern of the haplotype network found in Iran.

The colonization of some regions by C. attenuata
has likely involved founder events given the low
diversity of these areas, namely Central Europe and
North America. In the case of Central Europe, where
only one COI haplotype was found, common to the one
present in southern Europe and Azores, the most
likely origin of its colonization is southern Europe, a
refuge area for many species during the Quaternary
glaciations (Hewitt, 1999, 2004; Gibbard et al., 2010).
In the case of North America, also only one COI
haplotype was found, common to one present in
Western Asia, the most likely region of origin of the
colonization, probably through human accidental
introductions. In the case of South America, at least
two colonizations have likely happened: one from
Europe, and in high numbers that allowed the main-
tenance of the high genetic diversity found in Chile,
and another of undetermined origin, given the wide
distribution of the haplotype found in Ecuador. These
patterns of colonization of South and North America
by C. attenuata apparently differ from those that have
been suggested for other dipteran species of Mediter-
ranean origin. For example, genetic data revealed
that Drosophila subobscura Collin has very recently
colonized the New World (three decades ago), most
likely from the western Mediterranean into South
America, and then from there to North America
(Pascual et al., 2007).

The specimens from Australia analyzed in the
present study had originally been identified as
C. subvittata and C. imitatrix using morphological
characters. However, their mtDNA haplotypes (COI-
1 + COI-2) were identical to those from other speci-
mens identified as C. attenuata, suggesting that they
were either misidentified or, most likely, that these
taxa are conspecific with C. attenuata. However,
because this was based on a small fragment of COI,
we cannot completely exclude the possibility that
these are distinct species with a very low divergence
from C. attenuata.

Museum samples are a valuable source for assess-
ing genetic diversity in specimens from geographical
locations that may be difficult to sample, as well as
for assessing historical changes in genetic diversity
(Goldstein & DeSalle, 2003; Hartley et al., 2006).
However, they pose several technical challenges as a
result of DNA degradation, including amplification of
only short fragments (usually less than 200 bp), a risk
of contamination, and damage to the DNA in the form
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of single nucleotide misincorporations (Wandeler,
Hoeck & Keller, 2007). In our case, the amplification
success of the museum samples was high: from the
total of 28 specimens, 25 amplified both COI-1 and
COI-2 fragments. The three specimens for which
PCR amplification failed for the two fragments (one
specimen from India) or for one of the fragments
(two specimens from Egypt) were part of the oldest
specimens, collected in the 1930s and 1940s. When
analyzing sequence data from museum specimens,
we have to be aware that single base errors in PCR
products are more likely than in recent specimens
(Sefc, Payne & Sorenson, 2007). In the present study,
four haplotype sequences were found in the museum
samples that were not present in the recent samples
(H21 to H24). Although we cannot exclude the possi-
bility of base misincorporations in these sequences, it
is unlikely that haplotype H22 would have the same
errors in all of the 12 specimens where it was found
and which included relatively recent samples from
Ecuador (collected in 1999). These four haplotypes
differ from those found in recent samples by only
one or two nucleotide substitutions and, even if
these small differences were all artefacts (which is
unlikely), they would not change the overall pattern
of genetic diversity discussed in the present study.

This is the first study to characterize the worldwide
genetic variation of C. attenuata, testing some
hypotheses about the origin of the species, patterns
of dispersal and demographic processes, including
human-mediated spread, and not excluding the action
of selective agents (such as symbionts) in the current
distribution of its genetic variation. Further sampling
and more variable molecular markers will provide a
more comprehensive perspective on this species and
will allow testing some of the hypotheses raised in the
present study.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Fig. S1. Maximum likelihood trees based on nuclear genes white and elongation factor-1α.
Fig. S2. Distribution of cytochrome oxidase I (COI) haplotypes in the Iberian Peninsula.
Fig. S3. Mismatch distribution of mitochondrial DNA cytochrome oxidase I (COI) haplotypes. The expected
frequency is based on a population growth-decline model, determined using DNASP and is represented by a
continuous line. The observed frequency is represented by a dotted line. Parameter values for the mismatch
distribution are given in Table 6.
Fig. S4. Sequences of haplotypes H21 to H24 [concatenated COI-1(in bold) + COI-2] and CRE3_5EF (elongation
factor).
Table S1. Nucleotide substitutions found in the 647-bp fragment of cytochrome oxidase I (COI) for each
haplotype of Coenosia attenuata.
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Table S2. Pairwise p-distances between haplotypes of cytochrome oxidase I (COI) fragment for Coenosia
attenuata (H1 to H20) and for the remaining species. CHU, Coenosia humilis; CTI, Coenosia tigrina; CTE,
Coenosia testacea; ANT, Anthomyia sp.; DEL, Delia sp.; GB, sequences from GenBank.
Table S3. Analyses of molecular variance of cytochrome oxidase I (COI) haplotypes considering different
groupings of populations of Coenosia attenuata. Europe: Iberian Peninsula, Italy, Germany, Slovakia; East Med:
Anatolia, Crete, Israel; Middle East: Anatolia, Israel, Iran; Macaronesia: Azores, Madeira; North America:
California; South America: Chile.
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